一元二次方程的解法 一元二次方程的解法教案

小天给大家谈谈一元二次方程的解法,以及一元二次方程的解法教案应用的知识点,希望对你所遇到的问题有所帮助。

一元二次方程的解法 一元二次方程的解法教案一元二次方程的解法 一元二次方程的解法教案


一元二次方程的解法 一元二次方程的解法教案


一元二次方程的解法 一元二次方程的解法教案


1、一元二次方程的解法一、知识要点:一元二次方程和一元一次方程都是整式方程,它是初中数学的一个重点内容,也是今后学习数学的基础,应引起同学们的重视。

2、一元二次方程的一般形式为:ax2+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的次数是2的整式方程。

3、解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。

4、一元二次方程有四种解法:1、直接方法;2、配方法;3、公式法;4、因式分解法。

5、二、方法、例题精讲:1、直接方法:直接方法就是用直接方求解一元二次方程的方法。

6、用直接方法解形如(x-m)2=n (n≥0)的方程,其解为x=m± .例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11分析:(1)此方程显然用直接方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接方法解。

7、(1)解:(3x+1)2=7×∴(3x+1)2=5∴3x+1=±(注意不要丢解)∴x=∴原方程的解为x1=,x2=(2)解: 9x2-24x+16=11∴(3x-4)2=11∴3x-4=±∴x=∴原方程的解为x1=,x2=2.配方法:用配方法解方程ax2+bx+c=0 (a≠0)先将常数c移到方程右边:ax2+bx=-c将二次项系数化为1:x2+x=-方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2方程左边成为一个完全平方式:(x+ )2=当b2-4ac≥0时,x+ =±∴x=(这就是求根公式)例2.用配方法解方程 3x2-4x-2=0解:将常数项移到方程右边 3x2-4x=2将二次项系数化为1:x2-x=方程两边都加上一次项系数一半的平方:x2-x+( )2= +( )2配方:(x-)2=直接方得:x-=±∴x=∴原方程的解为x1=,x2= .3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a, b, c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。

8、例3.用公式法解方程 2x2-8x=-5解:将方程化为一般形式:2x2-8x+5=0∴a=2, b=-8, c=5b2-4ac=(-8)2-4×2×5=64-40=24>0∴x= = =∴原方程的解为x1=,x2= .4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。

9、这种解一元二次方程的方法叫做因式分解法。

10、例4.用因式分解法解下列方程:(1) (x+3)(x-6)=-8 (2) 2x2+3x=0(3) 6x2+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学)(1)解:(x+3)(x-6)=-8 化简整理得x2-3x-10=0 (方程左边为二次三项式,右边为零)(x-5)(x+2)=0 (方程左边分解因式)∴x-5=0或x+2=0 (转化成两个一元一次方程)∴x1=5,x2=-2是原方程的解。

11、(2)解:2x2+3x=0x(2x+3)=0 (用提公因式法将方程左边分解因式)∴x=0或2x+3=0 (转化成两个一元一次方程)∴x1=0,x2=-是原方程的解。

12、注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。

13、(3)解:6x2+5x-50=0(2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错)∴2x-5=0或3x+10=0∴x1=, x2=- 是原方程的解。

14、(4)解:x2-2(+ )x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法)(x-2)(x-2 )=0∴x1=2 ,x2=2是原方程的解。

15、小结:一般解一元二次方程,常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。

16、直接方法是基本的方法。

17、公式法和配方法是重要的方法。

18、公式法适用于任何一元二次方程(有人称之为法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程是否有解。

19、配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法解一元二次方程。

20、但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好。

本文到这结束,希望上面文章对大家有所帮助。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 836084111@qq.com,本站将立刻删除。