杭州+数据分析+培训 杭州数据分析培训机构排名
大数据需要什么学历才可以学。?
……好好学习,虽然累,但是要坚持!大数据时代的到来,简单的说是海量数据同完美计算能力结合的结果。确切的说是移动互联网、物联网产生了海量的数据,大数据计算技术完美地解决了海量数据的收集、存储、计算、分析的问题。大数据时代开启人类利用数据价值的另一个时代。大数据行业从业者的状态是怎样的呢?让我们走进来看看吧!
杭州+数据分析+培训 杭州数据分析培训机构排名
杭州+数据分析+培训 杭州数据分析培训机构排名
人才市场需求明显增大,绝大部分集中在一线及新一线城市
在2017年的调查中,发现数据团队的人才储备普遍存在较大缺口;数据人才培养周期长、成效慢。超过50%组织或机构的数据团队人才储备不充足,数据团队普遍存在人才缺口。
从2018年的数据团队调查问卷和数据分析中发现,市场对数据人才的需求仍然呈现明显的上升趋势。
从城市角度来看,、上海、深圳、广州、成都、杭州成为数据人才需求梯队,占全国需求的94%以上,其中的数据人才需求量全国最多,达到了35%,其次则是上海、深圳,均为18%左右。
开发、测试人员需求量旺盛,对算法、机器学习岗位人员的素质期待
在各类职位的中,开发、测试与数据的需求占比超半数,算法与机器学习的人员配置比例并不高,从专访中看出,就算法与机器学习岗位来说,并不在于人多,而在于人员质量高。
年薪5万—15万职位为主流
对比各类数据从业者的薪资情况,年薪5万—15万人数占比超6成,其次是年薪15万—20万,占比14%,年薪超过20万人数占比约20%。
从数据中看出,随着学历的升高,平均年薪呈现的变化趋势基本呈正相关。不同工作经验的数据从业者的收入水平也呈现较大异。平均1—3年工作经验平均年薪为14万,5年以上工作经验起薪稳定在28万以上,达40万,在各项工作年限区间,薪资基本呈线性增长。
学历要求集中在本科及大专
数据行业对学历要求主要集中在大专及本科学历,占近8成。入门门槛要求硕士或搏士学历的岗位极少,仅占1.6%.而这类岗位主要集中在算法、数据、机器学习这类岗位。高学历人才比例较少也与此类职位可能不通过网站公开有关。
算法与机器学习类职位薪资
在人数需求得到满足之后,一些数据团队的管理者也提出了更高的要求。从岗位薪资上也可以看出行业对于各类技能的需求程度。
在所有与数据相关的岗位中,算法岗位工资,年薪近30万,其次则是机器学习与产品岗位。
数据行业从业者平均薪资
在六个数据行业需求最旺盛的城市中,的平均薪资3. 主要技术包括:html常用标签、CSS常见布局、样式、定位等、静态页面的设计制作方式等,其次为上海、杭州、深圳、广州、成都。
在、上海、广州、成都,平均薪资的岗位依旧时算法,深圳薪资则是机器学习。此外,杭州的UI岗位薪资明显高于其他城市。
数据团队相关职位中,算法薪资竞争力最强,运维、数据、运营薪资增长潜力低
分析数据团队相关岗位薪资涨幅与工作年限的关系后发现,在所有数据行业相关岗位中,算法岗位薪资增长幅度,在10年工作经验背景下,这是一个平均年薪超过100万的岗位类型。
而3—5年的工作经验情况下,机器学习的薪资水平仅次于算法,但该岗位目前对于5年以上工作经验的从业者需求量很低,长期薪资竞争力无法得到反映。
相反,运维、数据、运营10年以上工作经验的岗位薪资学习大数据技术对学历没有具体要求,但是要想考初级大数据工程师至少要具备一些基本知识。水平垫底。
硕士学历更可能带来高收益
根据分析结果,本科学历求职者虽然在数据行业市场中需求量达,但对于拥有硕士学历的从业者,未来的职业发展潜力更大。随着工作年限的增加,入职门槛为硕士的岗位薪资。
希望对您有所帮助!~
随着大数据课程的推广程度和覆盖度增大,未来大数据课程的学历要求也会随之降低的,像目前的Web前端、Ja等课程都是大专及以上可学习的
你可以多参考几家机构,试听一下课程再决定,比如南京课工场,北大青鸟、中博软件学院等等都很不错。
CDA 是一套科学化,专业化,化的人才考核标准,共分为CDA LEVELⅠ ,LEVEL Ⅱ,LEVEL Ⅲ三个等级,涉及行业包括互联网、金融、咨询、电信、零售、医疗、旅游等,涉及岗位包括大数据、数据分析、市场、产品、运营、咨询、投资、研发等。该标准符合当今全球数据科学技术潮流,可以为各行业企业和机构提供数据人才参照标准。
LlI:无要求,皆可报考
LlII:需通过LEVEL I认证
LlIII:需通过LEVEL II认证 CDA数据分析师等级标准是根据过内各大企业对人才技术的需求而设立旨在为国内数据分析发展阶段提供一个权威、科学、专业的标准规范,说明究竟什么人才是的数据分析师?CDA数据分析师的就业前景可选择于通讯、医疗、银行、证券、保险、制造、商业、市场研究、科研、教育等多个行业和领域.根据三个不同的等级胜任不同的数据分析工作任务。
CDA数据分析师的含金量取决于要做什么,因为CDA数据分析师证书是由教育协会数据分析教育培训专业委员会监制,考试通过拿到的证书代表了你的技能水平,可做为企、事业单位选拔和聘用专业人才的参考依据.
考大数据分析师CDA值得选择。CDA(Certified Data Analyst),是大数据和人工智能时代面向范围全行业的数据分析专业人才职业简称,具体指在互联网、金融、咨询、电信、零售、医疗、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据人才。
对国内就业市场而言,本科学历是大数据相关职位的一个基本要求,从各个职位上看需求量都是的。高端人才要求硕士以上的学历也很普遍,显示出这个行业的进入的确是有一定门槛的。
对于学历这个问题,一般来说,当你没有任何基础的时候,能拿得出手的只有学历,本科生当然竞争不过研究生。但是随着工作时间久了,你的能力达到了这个职位的要求,学历就不重要了。尤其是对业务能力要求比较高的数据分析师、数据挖掘师这些职位,你的行业知识和业务理解能力在很多情况下比学历更加重要。
当然,高端人才(如算法工程师、数据科学家)对学历也比较高,如果各方面条件允许,选择计算数学/概率论/模式识别/计算机方面的研究生深造也是有必要的,一些大公司的确会在初筛的时候根据学历筛选人,这个也很正常。当然,你也可以在工作几年后,当觉得到基础瓶颈的时候,可以再去读书,这个时候可能你更清楚自己需要的是什么。
对于进入这个行业的同学而言,你可以选择提升学历后再进入这个行业,也可以先就业,用你的工作经验弥补你的学历不足。大数据是一个实践性很强的学科,从实际工作中获取的知识和能力是你在学校里面无法学习到的,企业最终也是看重你的实际工作能力。
学习大数据分析要用到哪些知识?
现在,我来到新的地方实习,也非常幸运的参加了一个央企的码头堆场优化系统设计,其实也算数据分析的一种吧,通过码头的数据实施调度,通过码头的数据进行决策,写成一个可作的自动化系统。而这个项目,最重要的就是业务流程的把握,我也参与项目最初的需求调研,和制定工作任务说明书SOW,体会颇多。1、需要有应用数学、统计学、数量经济学专业本科或者工学硕士层次水平的数学知识背景。
2、至少熟练SPSS、STATISTIC、Eviews、SAS等数据分析软件中的一门。
4、至少掌握一门数学软件:matalab,mathmatics进行新模型的构建。
53、明确问题(Defining the Problem)、至少掌握一门编程语言;
6,当然还要其他应用领域方面的知识,比如市场营销、经济统计学等,因为这是数据分析的主要应用领域。
首先我们要了解下大数据分析和传统的数据分析在概念上的区别,大数据分析相较于传统的数据分析,需要掌握更多的技能,对于从业者能力要求提高了。但是大数据分析的学习门槛并2、懂管理。一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。没有太高,学习难度适中,很多人都能够学会大数据分析。
数据分析师职业前景如何?主要是在哪些行业的公司?需要具备哪些技能?
我同事之前是在中鹏考的,现在是在互联网做用户分析,发展的还是可以的。数据分析师的主要工作是从公司现有数据中提取有价值的信息,这个价值信息要依据公司行业而定发展前景不错,现在企业数据量越来越多,但一直没有加以利用,现在都越来越重视数据分析,但有经验的数据分析师却很少,所sql是所有数据库查询的语言,sql非常容易入手。针对不同的数据库,如mysql、sqlserver、oracle等,sql语有所不同,但是总体上大同小异,只是细微处的别。而且如果你有数据库基础的话,只需要找些sql查询的习题来做一下,就会很快的得到提高。以人才缺口还很大
有一位数据分析牛人曾经总结过数据分析师的能力和目标:需要掌握的知识:
1、数据分析理论基础-统计学、概率论
2、数据分析工具-excel、SPSS、SAS/R
数据分析师指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。
尚学堂Ja培训怎样?
微软首席计数管韦青曾说过“我们对人才的期待有两个,一个是算法科学家,这个人的能力不只是数学,也要有实际经验,还得有计算机能力,包括电子工程的能力,得是个全才。尚对于大数据开发通常是在Linux环境下进行的,相比Linux作系统,Windows作系统是封闭的作系统,开源的大数据软件很受限制,因此,想从事大数据开发相关工作,还需掌握Linux基础作命令。学堂
5、懂设计。懂设计是指运用图表有效表达数据分析师的分析观点,使分析结果一目了然。图表的设计是门大学问,如图形的选择、版式的设计、颜色的搭配等等,都需要掌握一定的设计原则。你可以问问老学员,偷偷的去问,我当初去动学习,就是这么考察出来的,我还记得,17年八月份,大夏天,自己跑到楼底下装是已经报了名,跟学员聊天,发现基本上,学员对学校的评价都很高,再加上自己以前也有了解过,看过他们的课程,经过几次考察后就报名了。
开班的时候,很多同学跟我一样都是朋友、同学、亲戚介绍来的。基本都是在这里学过的。
学Ja要从多方面调查
数据分析师怎么入门?
那么大数据可以初略的分为: 大数据存储和大数据处理所以在这个阶段中呢,我们课程设计了大数据的标准:HADOOP大数据的运行呢并不是在咋们经常使用的WINDOWS 7或者W10上面,而是现在使用最广泛的系统:LINUX。1、懂业务。从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。
3、懂分析。指掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分
析。基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。高级的分析方法
有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分4阶段:大数据spark生态体系析法、对应分析法、时间序列等。
4、懂工具。指掌握数据分析相关的常用工具。数据分析方法是理论,而数据分析工具就是实现数据分析方法理论的工具,面对越来越庞大的考试地点:数据,我们不能依靠计算器进行分析,必须依靠强大的数据分析工具帮我们完成数据分析工作。
非数学专业需要基础的数理统计等知识,整个数据分析行业目前就是这样的:
1、你可以成为一个统计专员,这在大部分电商店铺都是这种意义
2、你可以成为一个分析专员,这在一些定型的公司有职位,但对能力要求仅限那个职位
3、你可以成为一个分析师,前提是你有基础且有求知的渴望,然后可以联系下面这个人。(截止日期9月1日前)
新浪微博 @数据分析先生
PS.数据分析不是关于复杂函数和软件的,而是知识的重构和非结构化问题的解决。
建议你买几本专业的书看看,每个行业的数据分析是不同的
一个小白学习学习数据分析师有多难
3. 主要技术包括:大数据前篇(什么是大数据,应用场景,如何学习大数据库,虚拟机概念和安装等)、Linux常见命令(文件管理、系统管理、磁盘管理)、Linux Shell编程(SHELL变量、循环控制、应用)、Hadoop入门(Hadoop组成、单机版环境、目录结构、HDFS界面、MR界面、简单的SHELL、ja访问hadoop)、HDFS(、SHELL、IDEA开发工具使用、全分布式集群搭建)、MapReduce应用(中间计算过程、Ja作MapReduce、程序运行、日志)、Hadoop高级应用(YARN框架介绍、配置项与优化、CDH、环境搭建)、扩展(MAP 端优化,COMBINER 使用方法见,TOP K,SQOOP导出,其它虚拟机VM的快照,权限管理命令,AWK 与 SED命令)首先我们要了解下大数据分析和传统的数据分析在概念上的区别,大数据分析相较于传统的数据分析,需要掌握更多的技能,对于从业者能力要求提高了。但是大数据分析的学习门槛并没有太高,学习难度适中,很多人都能够学会大数据分析3. 主要技术包括:ja基础语法、ja面向对象(类、对象、封装、继承、多态、抽象类、接口、常见类、内部类、常见修饰符等)、异常、、文件、IO、MYSQL(基本SQL语句作、多表查询、子查询、存储过程、事务、分布式事务)JDBC、线程、反射、Socket编程、枚举、泛型、设计模式。
所谓数据分析师,是指不同行业中专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。因此,想要成为一名的数据分析师,应用数学、统计学、数量经济学专业本科或者工学硕士层次水平的数学知识背景是不可少的。其次,作为一名数据分析师、至少需要熟练SPSS、STATISTIC、Eviews、SAS、大数据魔镜等数据分析软件中的一门,至少能用Acess等进行数据库开发,至少掌握一门数学软件如matalab、mathmatics进行新模型的构建,至少掌握一门编程语言。此外,想要成为一名的数据分析师,还得考虑数据分析的应用,这就需要学习专业本身的同时还能补充些其他应用领域方面的知识,比如市场营销、经济统计学等。总之,一个的数据分析师,应该业务、管理、分析、工具、设计都不落下。总体来说,先学基础,再学理论,是工具
1、学习数据分析基础知识,包括概率论、数理统计
2、你的目标行业的相关理论知识。比如金融类的,要学习证券、银行、财务等各种知识。
3、学习数据分析工具,如sas、spss,甚至excel也可以(数据分析模块的功能很强大)
切记,步是必不可少的,是数据分析的基础。
大数据培训课程介绍,大数据学习课程要学习哪些
学习课程大纲以下介绍的课程主要针对零基础大数据工程师每个阶段进行通俗易懂简易介绍,方面大家更好的了解大数据学习课程。课程框架是科多大数据的零基础大数据工程师课程。
3、公司业务的理解(依公司而定)一、 阶段:静态网页基础(HTML+CSS)
1. 难易程度:一颗星
2. 课时量(技术知识点+阶段项目任务+综合能力)
从技术层面来说,该阶段使用的技术代码很简单、易于学习、方便理解。从后期课程层来说,因为我们重点是大数据,但前期需要锻炼编程技术与思维。经过我们多年开发和授课的项目分析,满足这两点,目前市场上理解和掌握的技术是J2EE,但J2EE又离不开页面技术。所以阶段我们的重点是页面技术。采用市场上主流的HTMl+CSS。
二、 第二阶段:JaSE+JaWeb
1. 难易程度:两颗星
2. 课时量(技术知识点+阶段项目任务+综合能力)
称为Ja基础,由浅入深的技术点、真实商业项目模块分析、多种存储方式的设计
与实现。该阶段是前四个阶段最最重要的阶段,因为后面所有阶段的都要基于此阶段,也是学习大数据紧密度的阶段。本阶段将次接触团队开发、产出具有前后台(阶段技术+第二阶段的技术综合应用)的真实项目。
三、 第三阶段:前端框架
1. 难易程序:两星
2. 课时量(技术知识点+阶段项目任务+综合能力):64课时
3. 主要技术包括:Ja、Jquery、注解反射一起使用,XML以及XML解析、解析dom4j、jxab、jdk8.0新特性、SVN、Men、easyui
四、 第四阶段:企业级开发框架
1. 难易程序:三颗星
2. 课时量(技术知识点+阶段项目任务+综合能力)
3. 主要技术包括:Hibernate、Spring、SpringMVC、log4j slf4j 整合、myBatis、struts2、Shiro、redis、流程引擎activity, 爬虫技术nutch,lucene,webServCXF、Tomcat集群和热备、MySQL读写分离
如果将整个JAVA课程比作一个糕点店,那前面三个阶段可以做出一个武大郎烧饼(因为是纯手工-太麻烦),而学习框架是可以开一个星巴克(高科技设备-省时省力)。从J2EE开发工程师的任职要求来说,该阶段所用到的技术是必须掌握,而我们所授的课程是高于市场(市场上主流三大框架,我们进行七大框架技术传授)、而且有真实的商业项目驱动。需求文档、概要设计、详细设计、源码测试、部署、安装手册等都会进行讲解。
五、 第五阶段: 初识大数据
1. 难易程度:三颗星
2. 课时量(技术知识点+阶段项目任务+综合能力)
该阶段设计是为了让新人能够对大数据有一个相对的大概念怎么相对呢?在前置课程JAVA的学习过后能够理解程序在单机的电脑上是如何运行的。现在,大数据呢?大数据是将程序运行在大规模机器的集群中处理。大数据当然是要处理数据,所以同样,数据的存储从单机存储变为多机器大规模的集群存储。
(你问我什么是集群?好,我有一大锅饭,我一个人可以吃完,但是要很久,现在我叫大家一起吃。一个人的时候叫人,人多了呢? 是不是叫人群啊!)
六、 第六阶段:大数据数据库
1. 难易程度:四颗星
2. 课时量(技术知识点+阶段项目任务+综合能力)
3. 主要技术包括:Hive入门(Hive、Hive使用场景、环境搭建、架构说明、工作机制)、Hive Shell编程(建表、查询语句、分区与分桶、索引管理和视图)、Hive高级应用(DISTINCT实现、groupby、join、sql转化原理、ja编程、配置和优化)、hbase入门、Hbase SHELL编程(DDL、DML、Ja作建表、查询、压缩、过滤器)、细说Hbase模块(REGION、HREGION SERVER、HMASTER、ZOOKEEPER、ZOOKEEPER配置、Hbase与Zookeeper集成)、HBASE高级特性(读写流程、数据模型、模式设计读写热点、优化与配置)
该阶段设计是为了让大家在理解大数据如何处理大规模的数据的同时。简化咋们的编写程序时间,同时提高读取速度。
怎么简化呢?在阶段中,如果需要进行复杂的业务关联与数据挖掘,自行编写MR程序是非常繁杂的。所以在这一阶段中我们引入了HIVE,大数据中的数据仓库。这里有一个关键字,数据仓库。我知道你要问我,所以我先说,数据仓库呢用来做数据挖掘分析的,通常是一个超大的数据中心,存储这些数据的呢,一般为ORACLE,DB2,等大型数据库,这些数据库通常用作实时的在线业务。
总之,要基于数据仓库分析数据呢速度是相对较慢的。但是方便在于只要熟悉SQL,学习起来相对简单,而HIVE呢就是这样一种工具,基于大数据的SQL查询工具,这一阶段呢还包括HBASE,它为大数据里面的数据库。纳闷了,不是学了一种叫做HIVE的数据“仓库”了么?HIVE是基于MR的所以查询起来相当慢,HBASE呢基于大数据可以做到实时的数据查询。一个主分析,另一个主查询
七、 第七阶段:实时数据采集
1. 难易程序:四颗星
2. 课时量(技术知识点+阶段项目任务+综合能力)
3. 主要技术包括:Flume日志采集,KAFKA入门(消息队列、应用场景、集群搭建)、KAFKA详解(分区、主题、接受者、发送者、与ZOOKEEPER集成、Shell开发、Shell调试)、KAFKA高级使用(ja开发、主要配置、优化项目)、数据可视化(图形与图表介绍、CHARTS工具分类、柱状图与饼图、3D图与地图)、STORM入门(设计思想、应用场景、处理过程、集群安装)、STROM开发(STROM MVN开发、编写STORM本地程序)、STORM进阶(ja开发、主要配置、优化项目)、KAFKA异步发送与批量发送时效,KAFKA全局消息有序,STORM多并发优化
前面的阶段数据来源是基于已经存在的大规模数据集来做的,数据处理与分析过后的结果是存在一定延时的,通常处理的数据为前一天的数据。
举例场景:网站防盗链,客户账户异常,实时征信,遇到这些场景基于前一天的数据分析出来过后呢?是否太晚了。所以在本阶段中我们引入了实时的数据采集与分析。主要包括了:FLUME实时数据采集,采集的来源支持非常广泛,KAFKA数据数据接收与发送,STORM实时数据处理,数据处理秒级别
八、 第八阶段:SPARK数据分析
1. 难易程序:五颗星
2. 课时量(技术知识点+阶段项目任务+综合能力)
3. 主要技术包括:SCALA入门(数据类型、运算符、控制语句、基础函数)、SCALA进阶(数据结构、类、对象、特质、模式匹配、正则表达式)、SCALA高级使用(高阶函数、科里函数、偏函数、尾迭代、自带高阶函数等)、SPARK入门(环境搭建、基础结构、运行模式)、Spark数据集与编程模型、SPARK SQL、SPARK 进阶(DATA FRAME、DATASET、SPARK STREAMING原理、SPARK STREAMING支持源、集成KAFKA与SOCKET、编程模型)、SPARK高级编程(Spark-GraphX、Spark-Mllib机器学习)、SPARK高级应用(系统架构、主要配置和性能优化、故障与阶段恢复)、SPARK ML KMEANS算法,SCALA 隐式转化高级特性
在科多大数据课程的设计方面,市面上的职位要求技术,基本全覆盖。而且并不是单纯的为了覆盖职位要求,而是本身课程从前到后就是一个完整的大数据项目流程,一环扣一环。
比如从历史数据的存储,分析(HADOOP,HIVE,HBASE),到实时的数据存储(FLUME,KAFKA),分析(STORM,SPARK),这些在真实的项目中都是相互依赖存在的。
如需大数据培训选择【达内教育】,大数据学习课程如下:
目前大数据培训机构提供的课程大约有两种:一是大数据开发,二是数据分析与挖掘。大数据培训一般指大数据开发,不需要数学和统计学基础,学习的内容大概有:
0基础:
阶段: Ja开发·
第三阶段: Hadoop生态体系·
第四阶段: Spark生态系统·
第五阶段: 项目实战
提高班:
阶段:大数据基础·
第二阶段:Hadoop生态体系·
第三阶段:Spark生态系统·
第四阶段:项目实战
链接1、学科知识:从数据分析涉及到的专业知识点上看,主要是这些::
提取码: k2g2
信息平台在大数据领域应用实践综合分析的基础上,结合信息系统、决策支持等理论,从背景趋势、体系框架、理论方法、决策分析、应用现状等方面,全面、详细地对交通物流大数据决策分析体系进行了系统介绍。
怎么学习大数据课程?零基础大数据学习要学两部分:ja+大数据 有基础提高课程直接上大数据的相关课程,hadoop、hive、hbase这些 网上有很多的教程 。
难易程度:一颗星
2. 课时量(技术知识点+阶段项目任务+综合能力)
数据分析师这个证书有必要考嘛?
最重要的是:理论知识+软件工具+数据思维=数据分析基础,要把这些数据分析基础运用到实际的工作业务中,好好理解业务逻辑,真正用数据分析驱动网站运营、业务管理,真正发挥数据的价值。首先我肯定不反对大家考证书
前两个阶段的基础上化静为动,可以实现让我们网页内容更加的丰富,当然如果从市场人员层面来说,有专业的前端设计人员,我们设计本阶段的目标在于前端的技术可以更直观的锻炼人的思维和设计能力。同时我们也将第二阶段的高级特性融入到本阶段。使学习者更上一层楼。但是呢!你要对得起自己的金钱,特别是自己的时间
2、懂管理。一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。判断证书的含金量,是当你拿到这份证书的时候,能不能对你的就业、薪资、收入带来变化。
如果一个证书能直接帮助你找到月薪2~3W的工作,那我认为它是有含金量的。
但是为什么同样的数据分析师薪资异那么大,这种异到底体现在哪里?显然在数据分析行业,不是证书导致的。
因为数据分析师要落地到业务中去,不同公司有不同的业务逻辑,一套分析模版不可能适配所有业务问题。
你可以仔细去研究一下要求,没有要证书的, 技能和业务,这些才是核心。
如果仅仅想通过考证来提高薪资还是不太现实。
大家想从事数据的分析的话可以学学python,掌握数据分析的技能。肯定比证书来的更加实在。
数据分析师是从事数据分析类工作的职业证书,考了数据分析师后,一般就是做数据分析的工作的。
现在各行各业对数据分析师的需求是挺大的,在、上海、杭州、深圳、广州数据分析相关岗位是比较多的,而且薪资待遇不错,在众多的行业中,互联网金融、O2O、数据服务、教育、电子商务、文化娱乐领域对数据分析师需求量相比其他行业更大。
证书算是营销的关键点之一,可以衡量自身学习价值,随着技能的提升,证书是自己有相关技能的证明,但并不是所有证书都叫“证书”。
可以很认真的告诉你数据分析行业含金量高的证书目前没有,基本上都是以行业协会或者企业形式颁发的,所以含金量你觉得高吗?但是一些大厂的证书在求职的时候会有加分,比如阿里。
我不反对考证书,但是你要清楚什么是对自己有用的、重要的。
证书对您的帮助一方面是为自己镀金证明具备的技能实力,另一方面为企业提供一个很有力的参考标准,比如很多企业面试中有笔试的环节,如果有获得CDA证书,很可能会跳过笔试部分,增加了竞争优势。目前很多企业已经把CDA持证人优先例入到JD中,高等级证书也是你在职业发展中也是跳槽、升职加薪的有力证明。
如何快速成为数据分析师
在大城市打拼,每天早出晚归,赶公交挤地铁,我们人生的3/5的时间都花在了路上和工作上,除去睡眠,真正属于我们自己的业余时间真的是少之又少。然后职场竞争激烈,不进则退,于是乎,想高效地学习数据分析,算是个人专业技能的提升,为日后的跳槽或转行做好铺垫。不过,如何明晰地规划好自己的学习时间,让自己有的放矢地一步一步掌握数据分析师的各项基本技能?这是一个值得思考好和好的事情。我小时候的理想是将来做一名数学家,可惜长大了发现自己天赋不够,理想渐行渐远,于是开始考虑现实,开始做一些人生规划,我一直在思考将来从事何种职业,专注什么样的领域,重新定义着自己的职业理想。我现在的职业理想,比较简单,就是做一名数据分析师。
大数据技术目前主要分为两个方向:大数据开发和数据分析与挖掘 大数据开发:Ja-va、大数据基储HDFS分布式文件系统、MapReduce分布式计算模型、 Yarn分布式资源管理器、Zookeeper分布式协调服务、Hbase分布式数据库、Hive分布式数据仓库、 FlumeN...作者:来源:网络大数据|2015-05-29 10:24
收藏
分享
我小时候的理想是将来做一名数学家,可惜长大了发现自己天赋不够,理想渐行渐远,于是开始考虑现实,开始做一些人生规划,我一直在思考将来从事何种职业,专注什么样的领域,重新定义着自己的职业理想。我现在的职业理想,比较简单,就是做一名数据分析师。
为什么要做数据分析师:
在通信、互联网、金融等这些行业每天产生巨大的数据量(长期更是积累了大量丰富的数据,比如客户交易数据等等),据说到2020年,全球每年产生的数据量达到3500万亿GB;海量的历史数据是否有价值,是否可以利用为决策提供参考依据?随着软件工具、数据库技术、各种硬件设备的飞快发展,使得我们分析海量数据成为可能。
而数据分析也越来越受到层的重视,借助报表告诉用户什么已经发生了,借助OLAP和可视化工具等分析工具告诉用户为什么发生了,通过dashboard告诉用户现在在发生什么,通过预报告诉用户什么可能会发生。数据分析会从海量数据中提取、挖掘对业务发展有价值的、潜在的知识,找出趋势,为决策层的提供有力依据,为产品或服务发展方向起到积极作用,有力推动企业内部的科学化、信息化管理。
我们举两个通过数据分析获得成功的例子:
(1) Facebook广告与微博、SNS等网络社区的用户相联系,通过先进的数据挖掘与分析技术,为广告商提供更为精准定位的服务,该精准广告模式收到广大广告商的热捧,根据市场调研机构eMarketer的数据,Facebook年营收额超过20亿美元,成为美国的在线显示广告提供商。
(2) Hitwise发布会上,亚太区负责人John举例说明: 亚马逊30%的销售是来自其系统自动的产品,通过客户分类,测试统计,行为建模,投放优化四步,运营客户的行为数据带来竞争优势。
此外,还有好多好多,数据分析,在营销、金融、互联网等方面应用是非常广泛的:比如在营销领域,有数据库营销,精准营销,RFM分析,客户分群,销量预测等等;在金融上预测股价及其波动,套利模型等等;在互联网电子商务上面,百度的精准广告,淘宝的数据魔方等等。类似成功的案例会越来越多,以至于数据分析师也越来越受到重视。
然而,现实却是另一种情况。我们来看一个来自微博上的信息:在美国目前面临14万~19万具有数据分析和管理能力的专业人员,以及150万具有理解和决策能力(基于对海量数据的研究)的管理人员和分析人员的人才短缺。而在,受过专业训练并有经验的数据分析人才,未来三年,分析能通过采集65000余条各大网站2018年数据领域的信息,相比于去年,该领域人才需求上涨了15.4%。力人才供需缺口将逐渐放大,高级分析人才难寻。
也就是说,数据分析的需求在不断增长,然而合格的为企业做分析决策的数据分析师却寥寥无几。好多人想做数据分析却不知道如何入手,要么不懂得如何清洗数据,直接把数据拿来就用;要么乱套模型,分析的头头是道,其实完全不是那么回事。按俗话说就是:见过猪跑,没吃过猪肉。
我的职业规划:
对于数据分析,有一句话说的非常好:spss/sql之类的软件、决策树、时间序列之类的方法,这些仅仅就都是个工具而已,最重要的是对业务的把握。没有正确的业务理解,再牛的理论,再牛的工具,都是白搭。
做一名合格的数据分析师,除了对数据需要有良好的敏感性之外,对相关业务的背景的深入了解,对客户或业务部门的需求的清晰认识。根据实际的业务发展情况识别哪些数据可用,哪些不适用,而不是孤立地在“真空环境”下进行分析。
为此,我对自己的规划如下:
第二步:参与各种实习。研一开始我当时虽然有课,不过很幸运的找到一份一周只需去一两天的,内容是为三星做竞争对手分析,当然分析框架是leader给定了,我只是做整合资料和往ppt里填充的内容的工作,不过通过,我接触到了咨询行业,也向正式员工学习了很多商业分析、思考逻辑之类的东西。
之后去西门子,做和VBA的事情,虽然做的事情与数据分析无关,不过在公司经常用VBA做一些自动化处理工作,为自己的数据分析工具打好了基础。再之后去了易车,在那里了一个多月,参与了大众汽车销量数据短期预测的项目,一个小项目下来,数据分析的方法流程掌握了不少,也了解了企业是如何用一些时间序列模型去参与预测的,如何选取某个拟合曲线作为预测值。
第三步:份工作,预计3-5年。我估计会选择咨询公司或者IT公司吧,主要是做数据分析这块比较强的公司,比如Fico,埃森哲,高沃,瑞尼尔,IBM,AC等等。通过份工作去把自己的知识打得扎实些,学会在实际中应用所学,学会数据分析的流程方,让自己成长起来。
第五步:未知。我暂时没有想法,不过我希望我是在一直的进步。
能力:一定要懂点战略、才能结合商业;一定要漂亮的presentation、才能buying;一定要有global view、才能打单;一定要懂业务、才能结合市场;一定要专几种工具、才能干活;一定要学好、才能;一定要有强悍理论基础、才能入门;一定要努力、才能赚钱;最重要的:一定要务实、才有reputation;不懂的话以后慢慢就明白了。
大数据学习需要哪些课程?
大数据学什么
大数据需要学习的课程有8个阶段的内容,你可以按照顺序学习,大数据相对来说更适合有基础的人学习,懂Ja或者是做过Ja的人学习起来更容易些,选择大数据培训机构的时候重点关注机构的师资力量、课程体系、就业情况、费用等等方面,多对比几家机构,希望你找到好的大数据培训机构。
1、Ja编程技术
Ja编程技术是大数据学习的基础,Ja是一种强类型语言,拥有极高的跨平台能力,可以编写桌面应用程序、Web应用程序、分布式系统和嵌入式系统应用程序等,是大数据工程师最喜欢的编程工具,因此,想学好大数据,掌握Ja基础是必不可少的!
2、Linux命令
3、Hadoop
Hadoop是大数据开发的重要框架,其核心是HDFS和MapReduce,HDFS为海量的数据提供了存储,MapReduce为海量的数据提供了计算,因此,需要重点掌握,除此之外,还需要掌握Hadoop集群、Hadoop集群管理、YARN以及Hadoop高级管理等相关技术与作!
4、Hive
Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行,十分适合数据仓库的统计分析。对于Hive需掌握其安装、应用及高级作等。
5、Avro与Protobuf
Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行,十分适合数据仓库的统计分析。对于Hive需掌握其安装、应用及高级作等。
6、ZooKeeper
ZooKeeper是Hadoop和Hbase的重要组件,是一个为分布式应用提供一致的软件,提供的功能包括:配置维护、域名服务、分布式同步、组件服务等,在大数据开发中要掌握ZooKeeper的常用命令及功能的实现方法。
7、HBase
HBase是一个分布式的、面向列的开源数据库,它不同于一般的关系数据库,更适合于非结构化数据存储的数据库,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,大数据开发需掌握HBase基础知识、应用、架构以及高级用法等。
8、phoenix
phoenix是用Ja编写的基于JDBC API作HBase的开源SQL引擎,其具有动态列、散列加载、查询、、事务、用户自定义函数、二级索引、命名空间映射、数据收集、行时间戳列、分页查询、跳跃查询、视图以及多租户的特性,大数据开发需掌握其原理和使用方法。
9、Redis
phoenix是用Ja编写的基于JDBC API作HBase的开源SQL引擎,其具有动态列、散列加载、查询、、事务、用户自定义函数、二级索引、命名空间映射、数据收集、行时间戳列、分页查询、跳跃查询、视图以及多租户的特性,大数据开发需掌握其原理和使用方法。
随着IT时代逐渐开始向大数据DT时代迈进,只要有用户数据,那就可以在这个时代占有一席之地。所以,很多企业和个人纷纷开始向大数据靠拢,希望在岗起步的道路上能占有一个属于自己的数据空间,迎接以后更激烈的竞争环境。企业向大数据靠拢的方法就是招揽一些大数据方面的人才,而个人向大数据靠拢的方式就是去学习大数据。想学习大数据的人越来越多,但是,大数据到底学的课程是什么呢?这里,给大家详细的说一下大数据学习的课程,同时也是诸多大数据培训机构共同的课程。
阶段:大数据技术入门
1大数据入门:介绍当前流行大数据技术,数据技术原理,并介绍其思想,介绍大数据技术培训课程,概要介绍。
2Linux大数据必备:介绍Lniux常见版本,VMware虚拟机安装Linux系统,虚拟机网络配置,文件基本命令作,远程连接工具使用,用户和组创建,删除,更改和授权,文件/目录创建,删除,移动,拷贝重命名,编辑器基本使用,文件常用作,磁盘基本管理命令,内存使用命令,软件安装方式,介绍LinuxShell的变量,控制,循环基本语法,LinuxCrontab定时任务使用,对Lniux基础知识,进行阶段性实战训练,这个过程需要动手作,将理论付诸实践。
3CM&CDHHadoop的Cloudera版:包含Hadoop,HBase,Hiva,Spark,Flume等,介绍CM的安装,CDH的安装,配置,等等。
第二阶段:海量数据高级分析语言
Scala是一门多范式的编程语言,类似于ja,设计的初衷是实现可伸缩的语言,并集成面向对象编程和函数式编程的多种特性,介绍其优略势,基础语句,语法和用法, 介绍Scala的函数,函数按名称调用,使用命名参数函数,函数使用可变参数,递归函数,默认参数值,高阶函数,嵌套函数,匿名函数,部分应用函数,柯里函数,闭包,需要进行动手的作。
第三阶段:海量数据存储分布式存储
1HadoopHDFS分布式存储:HDFS是Hadoop的分布式文件存储系统,是一个高度容错性的系统,适合部署在廉价的机器上,HDFS能提供高吞吐量的数据访问,非常适合大规模数据集上的应用,介绍其的入门基础知识,深入剖析。
2HBase分布式存储:HBase-HadoopDatabase是一个高可靠性,高性能,面向列,可伸缩的分布式存储系统,利用HBase技术可在廉价PC上搭建起大规模结构化存储集群,介绍其入门的基础知识,以及设计原则,需实际作才能熟练。
第四阶段:海量数据分析分布式计算
1HadoopMapReduce分布式计算:是一种编程模型,用于打过莫数据集的并行运算。
3Spare分布式计算:Spare是类MapReduce的通用并行框架。
第五阶段:考试
1技术前瞻:对全球的大数据4. 描述如下:技术进行。
2考前辅导:自主选择报考工信部考试,对通过者发放工信部大数同样先说前面的阶段,主要是阶段。HADOOP呢在分析速度上基于MR的大规模数据集相对来说还是挺慢的,包括机器学习,人工智能等。而且不适合做迭代计算。SPARK呢在分析上是作为MR的替代产品,怎么替代呢? 先说他们的运行机制,HADOOP基于磁盘存储分析,而SPARK基于内存分析。我这么说你可能不懂,再形象一点,就像你要坐火车从到上海,MR就是绿皮火车,而SPARK是高铁或者磁悬浮。而SPARK呢是基于SCALA语言开发的,当然对SCALA支持,所以课程中先学习SCALA开发语言。据技能。
上面的内容包含了大数据学习的所有的课程,所以,如果有想学大数据的可以从这方面下手,慢慢的了解大数据。
(1)统计学:参数检验、非参检验、回归分析等。
(2)数学:线性代数、微积分等。
(3)学:主要是一些学量化统计的知识,如问卷调查与统计分析;还有就是一些学的知识,这些对于从事营销类的数据分析人员比较有帮助。
(4)经济金融:如果是从事这个行业的数据分析人员,经济金融知识是必须的。
(5)计算机:从事数据分析工作的人必须了解你使用的数据是怎么处理出来的,要了解数据库的结构和基本原理,同时如果条件充足的话,你还能有足够的能力从数据库里提取你需要的数据(比如使用SQL进行查询),这种提取数据分析原材料的能力是每个数据从业者必备的。
此外,如果要想走的更远,还要能掌握一些编程能力,从而借住一些专业的数据分析工具,帮助你完成工作。
扩展材料:大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据包括结构化、半结构化和非结构化数据,非结构化数据越来越成为数据的主要部分。据IDC的调查报告显示:企业中80%的数据都是非结构化数据,这些数据每年都按指数增长60%。
大数据就是互联网发展到现今阶段的一种表象或特征而已,没有必要神话它或对它保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本看起来很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。
参考资料:
(1)统计学:参数检验、非参检验、回归分析等
(2)数学:线性代数、微积分等
(3)学:主要是一些学量化统计的知识,如问卷调查与统计分析;还有就是一些学的知识,这些对于从事营销类的数据分析人员比较有帮助
(4)经济金融:如果是从事这个行业的数据分析人员,经济金融知识是必须的,这里就不多说了
(5)计算机:从事数据分析工作的人必须了解你使用的数据是怎么处理出来的,要了解数据库的结构和基本原理,同时如果条件充足的话,你还能有足够的能力从数据库里提取你需要的数据(比如使用SQL进行查询),这种提取数据分析原材料的能力是每个数据从业者必备的。此外,如果要想走的更远,还要能掌握一些编程能力,从而借住一些专业的数据分析工具,帮助你完成工作。
2、软件相关:从事数据分析方面的工作必备的工具是什么
(1)数据分析报告类:Microsoft Off软件等,如果连excel表格基本的处理作都不会,连PPT报告都不会做,那我只好说离数据分析的岗位还的很远。现在的数据呈现不再单单只是表格的形式,而是更多需要以可视化图表去展示你的数据结果,因此数据可视化软件就不能少,BDP个人版、ECharts等这些必备的,就看你自己怎么选了。
(2)专业数据分析软件:Off并不是全部,要从在数据分析方面做的比较好,你必须会用(至少要了解)一些比较常用的专业数据分析软件工具,比如SPSS、S步:掌握基本的数据分析知识(比如统计,概率,数据挖掘基础理论,运筹学等),掌握基本的数据分析软件(比如,VBA,Matlab,Spss,Sql等等),掌握基本的商业经济常识(比如宏微观经济学,营销理论,投资基础知识,战略与风险管理等等)。这些基础知识,在学校里尽量的学习,而且我来到了和君商学院,这样我可以在商业分析、经济分析上面领悟到一些东西,增强我的数据分析能力。AS、Matlab等等,这些软件可以很好地帮助我们完成专业性的算法或模型分析,还有高级的python、R等。
(3)数据库:hive、hadoop、impala等数据库相关的知识可以学习;
(3)辅助工具:比如思维导图软件(如MindMar、MindNode Pro等)也可以很好地帮助我们整理分析思路。
大数据技术目前主要分为两个方向:大数据开发和数据分析与挖掘
大数据开发:Ja-va、大数据基础、HDFS分布式文件系统、MapReduce分布式计算模型、 Yarn分布式资源管理器、Zookeeper分布式协调服务、Hbase分布式数据库、Hive分布式数据仓库、 FlumeNG分布式数据采集系统、Sqoop大数据迁移系统、Scala大数据黄金语言、 kafka分布式总线系统、Spark体系...
数据分析与挖掘:Python基础、关系型数据库MySQL、文档数据库MongoDB、内存数据库Redis、网络爬虫、数据分析、数据处理、数据分析处理进阶...
大数据技术专业属于交叉学科:以统计学、数学、计算机为三大支撑性学科。培养面向多层次应用需求的复合型人才。想要学习大数据课程选择【达内教育】。
主修课程bai:面向对象程序设计、Hadoop实用技术、数据挖掘、机器学习、数据统计分析、高等数学、Python编程、JAVA编程、数据库技术、Web开发、Linux作系统、大数据平台搭建及运维、大数据应用开发、可视化设计与开发等
数据分析师要掌握哪些技能
第四步:去自己喜欢的一个行业,深入了解这个行业,并讲数据分析应用到这个行业里。比如我可以去电子商务做数据分析师。我觉得我选择电子商务,是因为未来必将是互联网的时代,电子商务必将取代传统商务,最显著的现象就是传统零售商老大沃尔玛正在受到亚马逊的挑战。此外,电子商务比传统的零售商具有更好的数据收集和管理能力,可以更好的跟踪用户、挖掘户、挖掘潜在商品。数据分析师要学会Excel、掌握SQL 或者Oracle的SQL语句、掌握可视化工具。
3、至少能够用Acess等进行数据库开发;首先是Excel,貌似这个很简单,其实未必。Excel不仅能够做简单二维表、复杂嵌套表,能画折线图、Column chart、Bar chart、Area chart、饼图、雷达图、Combo char、散点图、Win Loss图等,而且能实现更高级的功能。
包括表(类似于BI的分析模型Cube),以及Vlookup等复杂函数,处理100万条以内的数据没有大问题。,很多更高级的工具都有Excel插件,例如一些AI Machine Learning的开发工具。
掌握SQL 或者Oracle的SQL语句,虽然你是业务分析师,但如果取数据能少依赖于IT人员和IT工具(比如BI的分析模型,有时候并不能获取你想要的数据),对于做业务分析,无疑是如虎添翼,我曾经见过华为的会计能写七层嵌套的SQL语句,很吃惊。
包括join、group by、order by、distinct、sum、count、erage,各种统计函数等。
掌握可视化工具,比如BI,如Cognos、Tableau、FineBI等,具体看企业用什么工具,像我之前用的是FineBI。
这些工具做可视化非常方便,特别是分析报告能含这些图,一定会吸引高层的眼球,一目了然了解,洞察业务的本质。另外,作为专业的分析师,用分析模型Cube能够方便地自定义报表,效率大大提升。
1、Excel
作为数据分析师,Excel是必备技能。Excel 是经过检验的可靠的数据分析工具,它广泛存在,非程序人员也能便捷作,所以大多数企业即使也使用其他工具,但 Excel 工具还是他们的不二选择。
2、统计学
统计学同样是数据分析师的必备技能之一,你只有学好了统计学才能谈得上数据分析。统计知识会要求我们以另一个角度看待数据。当你知道AB两组的异用平均值看是多傻的事情,你的分析技巧也会显著提高。如果你想成为一名出色的数据分析师,那么你就必须要会统计学。
3、SQL
4、行业知识
对于数据分析师来说,业务的了解比数据方更重要。而且业务学习没有捷径。这一部分也没有什么书可以看的了,基本都靠搜索,总结,思考,再搜索,总结,思考。
要学会的技能:
1、懂业务。从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。
3、懂分析。指掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分析。
在学习的过程中应该注意以下事项:
要想快速成为数据分析师,则可以从计算机知识开始学起,具体点就是从数据分析工具开始学起,然后在学习工具使用的过程中,辅助算法以及行业知识的学习。
在掌握Excel之后,接下来就应该进一步学习数据库的相关知识了,可以从关系型数据库开始学起,重点在于Sql语言。掌握数据库之后,数据分析能力会有一个较大幅度的提升,能够分析的数据量也会有明显的提升。
如果采用数据库和BI工具进行结合,那么数据分析的结果会更加丰富,同时也会有一个比较直观的呈现界面。
数据分析的一步就需要学习编程语言了,目前学习Python语言是个不错的选择,Python语言在大数据分析领域有比较广泛的使用,而且Python语言自身比较简单易学,即使没有编程基础的人也能够学得会。
通过Python来采用机器学习的方式实现数据分析是当前比较流行的数据分析方式。
数据分析师要学会的技能有以下几点:
1、知识体系
统计学的基本知识和对machine learning的了解:大部分对消费者的分析都离不开描述统计方法(平均数,中位数,显著性等等)
2、计算机软件
对于数据分析师来说,可能每个项目的70%到80%的时间都是在收集和处理数据,他们需要首先想好需要什么样的数据,比如timeframe是一年还是十年。选定好需要的数据后要进入一个或多个数据库去收集数据,需要对数据进行一些处理,看看是不是有missing value或者outliers等等。
将分析范围缩小是很重要的技能。如何将复杂的问题去掉细枝末节,抓住重点需要良好的沟通能力和对商业需求的充分理解能力。注意:避免向客户递交太多对解决核心问题无用的信息。另外,对公司和行业的了解也会使得这个过程更加得心应手。
4、了解听众(Knowing the Audience)
通常来说一个数据分析师需要面对PM第二阶段: 大数据基础·和CEO。因此,在准备presentation时,要注意回答这两方关心的不同的问题。对于PM来说,需要的是简单无修饰,多干货介绍在各种情况下如何进行协作交互。而面对CEO,需要展示的是稍加修饰的PPT和最重要提供具体的建议。
数据分析师要学会数据分析思维、编代码、懂数据库、统计、数据、机器学习等技能。
1、数据分析思维
作为一名数据科学家需要很挑剔,并且善于发现他人会遗漏的东西。那么我们应该如何做到像数据科学家一样思考呢?梳理分析思路,并搭建分析框架,把分析目的分解成若干个不同的分析要点,即如何具体开展数据分析,需要从哪几个角度进行分析,采用哪些分析指标(各类分析指标需合理搭配使用)。同时,确保分析框架的体系化和逻辑性。
2、编代码
如果希望拥有专业水准的话,从编程基础到端到端的开发,一些技术的语言,比如R、Python、和一些商业软件的SAS、SPSS等,以及深入的交互式学习,这些你至少精通几门,其他懂一些。
3、懂数据库
数据分析大多应用实际。企业数据常常被保存在MySQL、Oracle、Postgres、MonogoDB、Cassandra等数据库中,所以这些数据库你要了解甚至懂。
4、统计、数据、机器学习
关于数学知识,大学课堂会学过一部分,如果是数学科学类的专业会学得更精深。如果这一部分你需要弥补一下充充电,可汗学院、麻省理工都有相关的开放课程。关于统计学知识,去udacity,openintro上系统的学习,统计还是需要一定思维的锻炼的。
总体来说,先学基础,再学理论,是工具。基本上,每一门语言的学习都是要按照这个顺序来的。
1、学习数据分析基础知识,包括概率论、数理统计。基础这种东西还是要掌握好的啊,基础都还没扎实,知识大厦是很容易倒的哈。
2、你的目标行业的相关理论知识。比如金融类的,要学习证券、银行、财务等各种知识,不然到了公司就一脸懵逼啦。
3、学习数据分析工具,软件结合案列的实际应用,关于数据分析主流软件有(从上手度从易到难):Excel,SPSS,stata,R,Python,SAS等。
4、学会怎样作这些软件,然后是利用软件从数据的清洗开始一步步进行处理,分析,输出结果,检验及解读数据。
如果是实在不懂,还可以去网上找些视频课程看。切记,步是必不可少的,是数据分析的基础。
数据分析师要学会数据分析思维、编代码、懂数据库、统计、数据、等技能,还要懂业务、懂管理等。而且作为数据分析师,Excel是必备技能。个人以为要成为一名的数据分析师,除了应具备专业知识外,成熟的人格、宽泛的视野也是必须要具备的。
1、懂业务。从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。
3、懂分析。指掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分析。基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。
4、懂工具。指掌握数据分析相关的常用工具。数据分析方法是理论,而数据分析工具就是实现数据分析方法理论的工具,面对越来越庞大的数据,我们不能依靠计算器进行分析,必须依靠强大的数据分析工具帮我们完成数据分析工作。